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Abstract

Background and Aims—The Chronic Hepatitis Cohort Study (CHeCS) is a longitudinal 

observational study of risks and benefits of treatments and care in patients with chronic hepatitis B 

(HBV) and C (HCV) infection from four US health systems. We hypothesized that comparative 

effectiveness methods—including a centralized data management system and an adaptive 

approach for cohort selection—would improve cohort selection while controlling data quality and 

reducing the cost.

Methods—Cohort selection and data collection were performed primarily via the electronic 

health record (EHR); cases were confirmed via chart abstraction. Two parallel sources fed data to a 

centralized data management system: direct EHR data collection with common data elements, and 

chart abstraction via electronic data capture. An adaptive Classification and Regression Tree 

(CART) identified a set of electronic variables to improve case ascertainment accuracy.

Results—Over 16 million patient records were collected on 23 case report forms in 2006–2008. 

The vast majority of data (99.2 %) were collected electronically from EHR; only 0.8 % was 

collected via chart abstraction. Initial electronic criteria identified 12,144 chronic hepatitis 

patients; 10,098 were confirmed via chart abstraction with positive predictive values (PPV) 79 and 

83 % for HBV and HCV, respectively. CART-optimized models significantly increased PPV to 88 

for HBV and 95 % for HCV.

Conclusions—CHeCS is a comparative effectiveness research project that leverages electronic 

centralized data collection and adaptive cohort identification approaches to enhance study 

efficiency. The adaptive CART model significantly improved the positive predictive value of 

cohort identification methods.

Keywords
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Introduction

Comparative effectiveness research (CER) emphasizes the importance of conducting 

research in “real-world” settings as well as comparing treatment and research methods to 

determine “best practices” [1]. CER is used to optimize pragmatic randomized controlled 

trials within healthcare environments [2] while improving the rigor of observational studies 

to approximate the data quality of randomized clinical trials. CER methods include 

reduction in study costs through use of automated EHR data collection, ensuring data quality 

through centralized data management systems, as well as the application of “adaptive 

approaches” to improve study efficiency [3–5]. Both the Institute of Medicine and the 

American Association for the Study of Liver Disease (AASLD) support the application of 

CER methods to research on hepatobiliary disease [6–8]. Given the documented disparities 

in healthcare access and coverage among people with chronic liver disease, interventions 

designed to improve the quality of care will impact a significant proportion of this 

population [8].

The longitudinal Chronic Hepatitis B and C Cohort Study (CHeCS) was initiated in 2006 to 

assess the risks and benefits of hepatitis treatments and care—a CER approach. Participants 

were enrolled into the study from four large US health systems [9] that are members of the 

HMO Research Network (HMORN) [10]; data were collected primarily from the electronic 

health records (EHR) using a Virtual Data Warehouse (VDW). Because the existing 

HMORN VDW data structure uses a decentralized rather than a centralized data model—

which may reduce data quality and collection efficiency [11]—the CHeCS data coordinating 

center (DCC) implemented centralized data collection, including additional data collection 

via chart abstraction. A predefined set of automated EHR-based ICD-9 codes and laboratory 

inclusion criteria were used to identify patients with chronic HBV and HCV at each site [9]. 

The chronic HBV and HCV cases were later confirmed via chart review, which was a labor 

intensive and costly endeavor. We hypothesized that a CER electronic initiative [1] for data 

collection and an adaptive approach for cohort selection would enhance study accuracy and 

efficiency.

Methods

Cohort Selection

The CHeCS investigation follows the guidelines of the US Department of Health and 

Human Services regarding the protection of human subjects. The study protocol was 

approved and is renewed annually by the institutional review board at each participating site. 

Patients were enrolled from four HMORN health systems—Henry Ford Health System 

(HFHS), Detroit, MI (leading clinical site and Data Coordinating Center); Geisinger Health 

System, Danville, PA; Kaiser Permanente–Northwest, Portland, OR; and Kaiser 

Permanente–Hawaii, Honolulu. For the initial enrollment cycle, the total source population 

included 1,248,558 adult patients with at least one health system encounter during 2006–

2008 [12]. Automated EHR-based data-pulling algorithms, based on a common set of ICD-9 

codes and laboratory-based EHR inclusion criteria, were used to identify patients with 

chronic HBV and HCV at each site. Detailed inclusion criteria have been published 

previously [9] and are summarized in “Appendix 2.”
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CHeCS was designed to enroll new cohorts in subsequent cycles while updating existing 

patient data annually. However, funding was insufficient to support chart reviews for all 

cases identified during the second (2008–2010) and third (2011) cycles of cohort 

identification. Based on what we had learned from the initial cohort selection and validation, 

an adaptive approach was considered for future cohort identification.

Data Collection and Management

A large proportion of CHeCS data were collected specifically to assess the risks and benefits 

of hepatitis treatments and care in a “real-world setting.” CHeCS extended and modified the 

existing HMORN EHR-based VDW structure [11]. The VDW structure includes a 

standardized database with common data elements and records at the patient level (Fig. 1) 

and contains automated EHR data (demographics, encounters, laboratory results), health 

plan data (plan enrollment, pharmacy data), and census data (e.g., estimated household 

income based on block group or zip code) [11]. Unlike the HMORN VDW structure, which 

stores data behind separate security firewalls at each health system, CHeCS data are stored 

in a secure, centralized data management system at HFHS with an electronic data capture 

(EDC) feature for direct data collection at the site, designed by the Data Coordinating Center 

(DCC) at HFHS.

Eleven VDW-based case report forms (CRFs) were adopted, with three additional CHeCS-

specific CRFs designed in VDW-like formats (Table 1). To harmonize with the EHR data, an 

additional eleven CRFs were created for medical chart abstraction, including liver biopsy 

results, external laboratory results, and detailed antiviral therapy data from 2006 to 2010, as 

well as a summary history of antiviral therapy prior to 2006. These data were entered into 

the central HFHS database from each site via EDC. Additionally, a one-time survey of 

hepatitis exposure and patient behavior was mailed to participants; survey data were stripped 

of identifying information before being entered into the central HFHS database.

Experienced medical abstractors reviewed patients’ EHR charts at each site (from first 

system encounter forward) for case confirmation and chart abstraction data collection. 

Charts were flagged if they lacked documentation that a liver specialist had diagnosed the 

patient with chronic hepatitis B or C, or if there was an indication of acute hepatitis or that 

chronic hepatitis had been ruled out. Flagged charts subsequently underwent formal case 

review under the supervision of a hepatitis clinician using a standardized set of hepatologist-

developed criteria. Patients whose chronic hepatitis infection status could not be con-firmed 

were excluded [9].

Endpoints and Covariates of Interest

For this analysis, the endpoints were confirmed chronic HBV and HCV cases, respectively. 

The study goal was to improve cohort identification based on electronic data. Potential 

predictor variables (covariates), described below, included the original e-based cohort 

inclusion criteria (see Appendix 2), selected laboratory test results, HIV status, and 41 

additional liver disease-related procedures/diagnoses:

1. The original e-based cohort inclusion criteria:
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The original six HBV cohort inclusion criteria and three HCV cohort inclusion 

criteria detailed previously [9] and summarized in “Appendix 2.”

2. Electronic laboratory test results not included above:

Four additional HCV variables were based on electronic laboratory results: (a) At 

least two positive HCV antibody test results (anti-HCV, IgG anti-HCV, or HCV 

RIBA); (b) at least two positive HCV antibody test results occurring at least 6 

months apart; (c) at least two positive virology test results for HCV (HCV RNA 

qualitative, HCV RNA quantitative, or HCV RNA genotype); and (d) at least two 

positive HCV virology results occurring at least 6 months apart. Original HBV 

inclusion criteria already encompassed all laboratory tests of interest.

3. Liver-related diagnosis and procedure codes using VDW encounter codes:

Any of the following in EHR data: (a) A biopsy procedure performed (Current 

Procedural Terminology [CPT] codes 47000, 47100, 47001; ICD-9 procedure 

codes 50.11, 50.12, 50.13, 50.14); (b) acute HBV (ICD-9 diagnosis codes 70.20, 

70.21, 70.30, 70.31); (c) acute HCV (ICD-9 diagnosis codes 70.41, 70.51, 70.70, 

70.71); and (d) HIV (ICD-9 diagnosis codes 42.xx, 79.53, 795.71, V08). In 

addition, the procedure-based and ICD-9 diagnosis-based codes for liver 

transplant; hepatocellular carcinoma; liver failure including hepatorenal 

syndrome; hepatic encephalopathy; portal hypertension (and portal 

decompression procedures); esophageal varices; other gastrointestinal 

hemorrhage (selected); ascites and paracentesis procedures; other sequelae; and 

indication of cirrhosis (ICD-9 diagnosis codes 571.2 and 571.5) were extracted 

based on electronic VDW encounter data.

HBV and HCV treatment-related variables (EHR pharmacy data) were not included as 

potential predictor variables in order to avoid cohort selection bias related to treatment.

Statistical Analysis

The analysis was performed based on the initial cohort data and patients (n = 12,144). All 

patients had undergone chart review and detailed case reviews as needed for case 

confirmation. Prior to the analysis, the initial cohort data were randomly divided into two 

datasets using SAS 9.3 [13]. One set of data—learning data—was used to build a model; the 

other set—testing data—was used to validate the model. Classification and Regression Trees 

(CART) analysis was performed using CART® 6.0 software (Sal-ford Systems, San Diego, 

CA) [14] to identify a set of variables to improve accuracy of cohort selection methods. 

CART generates a binary recursive tree partitioning, using a nonparametric approach, to 

identify the variables most predictive of the outcome of interest and subsequently develop a 

predictive model for classification of future subjects [14]. Unlike multivariable logistic 

regression, it is ideally suited for a clinical decision-making model because it can reveal 

important relationships between variables that can remain hidden when using logistic 

regression [15, 16].

CART begins with the root node (all subjects) and then determines which variable has the 

highest predictive ability to assign subjects to groups (i.e., case and control). Subsequently, it 
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determines the optimal split (cutoff point) for that predictor variable, which will divide the 

population into two child nodes with a determination of group classification (case and 

control) at each node, based on its prevalence. The process continues classifying the subjects 

until no further predictor variables are identified [14, 16].

Sensitivity, specificity, and positive predictive value (PPV), as well as model accuracy, 

measured by area under the receiver operating characteristic curve (AUROC), were 

calculated to assess the model predictive accuracy. The AUROC range is 0–1; values of 0.7–

8 and 0.9 are considered “good” and “excellent” prediction, respectively. Generalized 

estimating equations (GEE) [17, 18] were used to compare the PPV difference between the 

modified inclusion criteria (CART model) and original inclusion criteria alone.

Results

Initial Cohort Selection and Confirmation

For the initial cohort, 12,144 patients were identified: 2,538 (20.9 %) met the original HBV 

inclusion criteria, and 9,851 (81.1 %) met the original HCV criteria, including 245 (2.0 %) 

who met inclusion criteria for both HBV and HCV. After chart abstraction, 10,098 patients 

were confirmed (1,992 HBV and 8,171 HCV, including 65 HBV/HCV co-infected). PPV 

rates of the original inclusion criteria were 78.5 % for HBV, 82.9 % for HCV, and 26.5 % for 

co-infection.

Cohort Data Collection and Management

Data were collected on a total of 26 CRFs (11 VDW-based EHR-CRFs, 3 additional EHR-

CRFs, 11 abstraction CRFs, and a single CRF for survey data). During the initial data-

collection cycle, 16,894,798 records were collected for the initial cohort of 12,144 HBV and 

HCV patients. Of the nonsurvey data records, 99.2 % were collected by automated data 

abstraction and 0.8 % by chart abstraction (Table 1).

Data quality (missing, inconsistent, or invalid records/data fields) was checked daily by the 

data coordinating center (DCC). Queries were sent back to each site monthly for resolution; 

after resolution, sites re-submitted the data. The DCC also harmonized data to increase 

efficiency compared with data processed at the site level.

Adaptive CART Models for Cohort Identification

The initial cohort (n = 12,144) was randomly divided in half, with 6,122 patients in the 

learning dataset, and 6,022 patients in the testing dataset. The two datasets had equal 

proportions of HBV and HCV, and similar patient characteristics.

Chronic Hepatitis B (HBV)

A total of 65 variables (or variable combinations) were included in the initial CART model. 

The final decision tree for HBV consisted of four terminal nodes (TNs): three TNs classified 

as HBV (TNs 2–5, Fig. 2) and one classified as non-HBV (TN1, Fig. 2). Three out of the six 

original inclusion criteria (see “Appendix 2”) remained in the final model. Based on the 

learning data, estimated PPV was 86.4 %, and overall predictive ability (AUROC) was 0.96; 
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sensitivity was 95.0 %, and specificity was 97.1 %. Validation results (based on the testing 

data) yielded a PPV of 88.1 %, AUROC of 0.97, and sensitivity and specificity of 96.0 and 

97.4 %, respectively (Table 2).

The original cohort e-inclusion criteria 2, 5, and 3 (see “Appendix 2”), in hierarchical order, 

predicted HBV cases (Fig. 2). Criterion 2 identified 923 possible HBV cases (with 108 

misclassified, TN4) as the first variable split in the model. In cases without criterion 2, a 

finding of two or more positive laboratory results for hepatitis B surface antigen (HBsAg), 

hepatitis e-antigen, or HBV DNA, in any combination occurring at least 6 months apart 

(criterion 3), identified an additional 95 cases (with 9 misclassified, TN3). Finally, patients 

without inclusion criteria 2 or 3, but with a positive laboratory result for both hepatitis B 

core antibody and surface antigen (criterion 5), added an additional 82 cases (33 

misclassified, TN2).

Chronic Hepatitis C (HCV)

Four variables remained in the final model (Fig. 3, in hierarchical order) with five terminal 

nodes (TN): (1) two positive RNA test results; (2) original cohort inclusion criteria 1 (two 

ICD-9 codes for hepatitis C, at least 6 months apart); (3) a biopsy encounter; and 4) a 

cirrhosis encounter. The model had an estimated PPV of 95.6 % and AUROC of 0.93, based 

on the learning data. Validation results (based on the testing data) showed PPV of 94.9 % 

and AUROC 0.93 (Table 2). The sensitivity and specificity were 82.7 and 92.2 % based on 

the learning data, and 84.5 and 90.6 % based on testing data.

From the revised tree structure (Fig. 3), the two positive RNA tests identified 3406 possible 

cases (with 120 mis-classified, TN5) as the first variable split in the model. In patients 

without two positive RNA tests (TN1) or two viral hepatitis C ICD-9 codes at least 6 months 

apart (inclusion criterion 1), there were 1,472 controls identified (with 116 misclassified, 

TN1). In the absence of two positive RNA tests, the presence of the previous inclusion 

criterion 1 (two ICD-9 codes for hepatitis C at least 6 months apart) as well as indication of 

biopsy added 102 cases (20 misclassified, TN 4). Finally, if there was no biopsy, cirrhosis 

encounters (ICD-9 codes 571.2 and 571.5) added the last group of 110 HCV cases (26 

misclassified, TN 3).

In summary, a three-criteria combination in the CART model for HBV had PPV of 87.2 %, 

which was significantly improved compared with 78.5 % using the six individual HBV 

criteria in parallel (p <0.001, n = 12,144; Table 3); while using a four-variable combination 

CART model for HCV identification, PPV was significantly improved to 95.2 %, compared 

with 83.0 % using the three initial individual HCV criteria in parallel (p <0.001)

Discussion

CHeCS is the first US longitudinal cohort study to characterize a population of over 12,000 

chronic viral hepatitis patients through automated EHR and chart abstraction data collection 

[16]. The comprehensive data include general population characteristics, health conditions, 

disease-specific procedures and treatment, disease progression, and patient status. All data 

are derived from routine care in large healthcare systems. This EHR data platform is ideal 
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for Comparative Effectiveness Research; such research focuses on patient outcomes using 

data collected during the course of routine care to maximize clinical utility [19] and improve 

quality of care [8].

The HMORN VDW data have been used for collaborative research since 2003; however, it 

employs a distributed data model rather than a centralized database. To ensure data integrity, 

the CHeCS data coordinating center (DCC) centralized this data and included additional 

patient data collected via chart abstraction (for example, biopsy results and treatment 

responses). CHeCS modified the data structure by: (1) extending the VDW database CRFs 

by adding three EHR “VDW” structure-like CRFs; (2) adding eleven chart abstraction CRFs 

for comprehensive data collection; and (3) centralizing the VDW data model for stricter data 

control. With centralized data, the DCC can conduct efficient data processing and systematic 

data-quality checks.

The CHeCS data-collection process involves not only electronic data retrieval but also 

medical chart abstraction and patient self-reported outcomes. The electronic retrieval and 

medical chart abstraction datasets are complementary and provide an opportunity to assess 

the quality of automatic EHR data. The CART model for cohort identification is our first 

attempt to take advantage of such comprehensive data collection.

While it is relatively straightforward to diagnose chronic HBV/HCV in a clinical setting 

using serologic markers, identifying a cohort of patients with chronic HBV/HCV based on 

observational EHR data remains challenging in two respects. First, serologic markers may 

be available to a provider in a clinical setting, but may not be available in structured, 

queriable format (e.g., they are embedded in physician notes or external laboratory results in 

PDF format), or may not be complete in a general routine care setting. Second, data-

processing efficiency is important when sifting through laboratory and diagnostic data for 

thousands of patients; therefore, e-inclusion criteria cannot be overly complex. In order to 

identify as many potential chronic HBV/HCV patients as possible, our original cohort 

identification e-criteria included a combination of laboratory results and diagnostic codes 

suggestive of chronic HBV or HCV; however, this “wide net” resulted in a high false-

positive rate. Although we had sufficient resources to confirm case status through chart 

review for our initial CHeCS cohort, conducting chart reviews for 100 % of subsequent 

cohorts was infeasible. Furthermore, most observational studies would benefit from refining 

and improving electronic cohort identification criteria.

Our adaptive approach has shown that combinations of automatic e-data variables can 

identify accurate cohorts. Our CART models for automated EHR-based cohort identification 

demonstrated that a set of variable combinations could significantly improve the PPV of our 

original cohort inclusion criteria. The CART model for each disease was built using half of 

the entire cohort (thus controls for each disease consisted of the patients who met inclusion 

criteria for the disease and were later excluded, as well as those that met inclusion criteria 

for the other disease), which approximates a real clinical setting with a mixed patient 

population. Both CART models have been validated using the other half of the entire 

CHeCS cohort, and the results are robust. Each year, new patients will be added to the 

CHeCS cohort using the original inclusion criteria, and future chart abstraction resources 
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can now be directed toward those patients meeting the CART-generated criteria—improving 

cost-efficiency.

A potential limitation of defining cases by the presence of multiple diagnosis or procedure 

codes is that selection may favor patients with more severe disease, and possibly excludes 

cases with mild disease (and thus few or no related conditions or treatments). However, an 

unavoidable limitation of any cohort study based on patients engaged in medical care may 

be the inclusion of persons who are more ill than those in the general community. 

Accordingly, future analyses will be adjusted not only for demographic differences, but also 

for stage of disease if degree of morbidity is likely to affect results. Our adaptive CART 

model for patient selection is also limited to this mixed viral hepatitis population; although 

such a mixed population is likely to be more complex than the usual healthcare population, 

our model must still be validated for use in a general health system population.

In summary, CHeCS has applied several key comparative effectiveness research (CER) 

principles: comprehensive data collection through review of routine care records and strict 

data quality control; adaptive approaches to improve electronic cohort identification; and 

improvement to the quality of and access to hepatology care. Results from this study have 

already demonstrated that real-world chronic HBV patients had reduced development of 

hepatocellular carcinoma if they were treated with antiviral therapy [20]. The first cycle of 

data collection with clinical confirmation of HBV and HCV has refined the inclusion criteria 

used for cohort identification using CART modeling. Our adaptive approach to using 

electronic data for prediction of HBV and HCV infection status is feasible, can be used for 

sequential CHeCS cohort identification, and may be useful in other studies or clinical 

programs to identify patients diagnosed with HBV and HCV infection [12, 21].
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ROC Receiver operating characteristic AUROC Area under the ROC curve
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Appendix 1: CHeCS Investigators and Sites

Division of Viral Hepatitis, National Centers for HIV, Viral Hepatitis, STD, and TB 
Prevention (NCHHSTP), Centers for Disease Control and Prevention (CDC), Atlanta, 
Georgia:

Scott D. Holmberg, Eyasu H. Teshale, Philip R. Spradling, Anne C. Moorman, Jim Xing, 

and Cindy Tong.

Henry Ford Health System, Detroit, Michigan:

Stuart C. Gordon, David R. Nerenz, Mei Lu, Lois Lamerato, Loralee B. Rupp, Nonna 

Akkerman, Nancy J. Oja-Tebbe, Talan Zhang, Alexandra Sitarik, Yan Wang, and Dana 

Larkin.

Center for Health Research, Geisinger Clinic, Danville, Pennsylvania:

Joseph A. Boscarino, Zahra S. Daar, Robert E. Smith, and Patrick J. Curry.

The Center for Health Research, Kaiser Permanente Hawaii, Honolulu, Hawaii:

Vinutha Vijayadeva, Cynthia C. Nakasato, and John V. Parker.

The Center for Health Research, Kaiser Permanente Northwest, Portland, OR.

Mark A. Schmidt, Judy Donald, and Erin M. Keast.

Appendix 2

Chronic hepatitis B (HBV) cohort inclusion criteria:

HBV Criteria 1: Two or more ICD-9 diagnoses indicative of viral hepatitis B1 at least 

6 months apart; o

HBV Criteria 2: A viral hepatitis B or chronic liver disease ICD-9 diagnosis (571.5 

cirrhosis of liver without mention of alcohol, 456.0–456.1 esophageal varices, 789.59 

other ascites, 155.0 liver cancer, V42.7 liver replaced by transplant, V49.83 awaiting 

organ transplant status) plus positive laboratory evidence of hepatitis B surface 

antigen (HBsAg) or hepatitis B deoxyribonucleic acid (HBV DNA); or

HBV Criteria 3: Two or more positive laboratory results for HBsAg, hepatitis e-

antigen (HBeAg), or HBV DNA, in any combination, occurring at least 6 months 

apart; or

HBV Criteria 4: A negative hepatitis B IgM core antibody (IgM anti-HBc) laboratory 

result concurrent or prior to a positive HBsAg or

1Chronic hepatitis B International Statistical Classification of Diseases and Related Health Problems-9th Edition (ICD-9) codes: 
070.22, 070.23, 070.32, 070.33; and acute/unspecified hepatitis B ICD-9 codes: 070.20, 070.21, 070.30, and 070.31.
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HBV DNA; or HBV Criteria 5: A positive hepatitis B core antibody (anti-HBc) and 

positive HBsAg; or

HBV Criteria 6: A positive HBsAg and an elevated alanine aminotransferase (ALT) 

occurring at least 6 months apart.

Chronic Hepatitis C (HCV) cohort inclusion criteria:

HCV Criteria 1: Two or more ICD-9 diagnoses indicating viral hepatitis C1 at least 6 

months apart; or

HCV Criteria 2: A viral hepatitis C1 or qualifying chronic liver disease ICD-9 

diagnosis (571.5 cirrhosis of liver without mention of alcohol, 456.0–456.1 

esophageal varices, 789.59 other ascites, 155.0 liver cancer, V42.7 liver replaced by 

transplant, V49.83 awaiting organ transplant status) separated at least 6 months apart 

from a positive anti-HCV laboratory result; or

HCV Criteria 3: A positive laboratory result for hepatitis C ribonucleic acid (HCV 

RNA) or HCV genotype.

1Chronic hepatitis C diagnosis ICD-9 codes: 070.44, 070.54, 070.70, 070.71; acute/unspecified hepatitis C ICD-9 codes: 070.41, 
070.51.
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Fig. 1. 
The HMORN VDW data structures [11]
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Fig. 2. 
CART HBV model
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Fig. 3. 
CART HCV model
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